
Chapter 1

The Special Theory of relativity

1.1 Pre - relativistic physics

The starting point for our work are Newtons laws of motion. These can be stated

as follows:

• Free particles move with constant velocity.

• The vector force F is proportional to the rate of change of momen-

tum i.e. F = d
dt (mv).

• To every action there is an equal and opposite reaction.

The first of these laws singles out inertial frames as the non - accelerating ones.

Consider now a frame O [ i.e. a set of spatial coordinates (x, y, z) and a time

coordinate t ] and another frame Ō with coordinates (x̄, ȳ, z̄, t̄) which moves in the

x direction with uniform speed v relative to the frame O.

Common sense suggests that the two sets of coordinates are related by

x̄ = x − vt ,

ȳ = y ,

z̄ = z ,

t̄ = t . (1.1)

These are the Galelian transformations .
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Figure 1.1: I do not know what I may appear to the world; but to myself I seem
to have been only like a boy playing on the sea - shore, and diverting myself in now
and then finding a smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me. Isaac Newton

If the particle has a velocity u with components (u1, u2, u3) in O, its velocity

in Ō is:

ū1 = u1 − v ,

ū2 = u2 ,

ū3 = u3 , (1.2)

or

ū = u − v , (1.3)

where

u1 =
dx1

dt
, u2 =

dx2

dt
, u3 =

dx3

dt
. (1.4)

More generally if the coordinate axes and the origins of O and Ō differ then:

X̄ = RX − vt − d , (1.5)

where X has components (x, y, z). Here R is a rotation matrix aligning O and Ō,

v is the relative velocity of O with respect to Ō and d is the displacement of the

origin from Ō.

Since the transformation is linear [ constant velocity in O ⇒ constant velocity

in Ō ], Ō is inertial if O is.

Thus there are an infinite set of inertial frames, all moving uniformly with

respect to each other.
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All of Newtons laws apply in any inertial frame since

ā =
du

dt
=

dū

dt
, (1.6)

and F is invariant. Thus we have Newtonian [ Galelian ] Relativity.

The laws of mechanics do not allow measurement of absolute velocity, however

one can measure absolute acceleration.

Newton explained inertial frames in terms of absolute space identified with the

center of mass of the solar system or a frame of “fixed stars”. However this is

unsatisfactory because:

• There is no unique identification [ many inertial frames ].

• Philosophically unappealing since absolute space affects everything

but is affected by nothing.

1.2 The equations of electromagnetism

Maxwell’s equations for the electromagnetic field [ in units with ε0 = µ0 = c = 1 ]

are:

∇× B −
∂E

∂t
= 4πj , ∇× E +

∂B

∂t
= 0 ,

∇ · E = 4πρ , ∇ · B = 0 . (1.7)

These equations show that one can have electromagnetic waves in a vacuum which

travel with a speed c = 3 × 108 ms−1, Thus light is a form of electromagnetic

radiation. An Ether was postulated as the medium which carries these waves [ i.e.

the speed c is the speed with respect to the ether ] and naturally this was identified

with the absolute space of Newton.

Attempts to measure the ether drift by Michelson and Morley in 1887 gave a

null result, so effects like stellar aberration could not be due to the earth dragging

the ether.

Another great problem was that Maxwell’s equations did not appear to obey

the principle of Galelian Relativity i.e. they were not invariant under the Galelian
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Figure 1.2: James Clerk Maxwell

transformations. This means that in a moving space ship the electric and optical

phenomena should be different from those in a stationary ship!!! Thus one could

use for example optical phenomena to determine the speed of the ship.

One of the consequences of Maxwell’s equations is that if there is a disturbance

in the field such that light is generated, these electromagnetic waves go out in all

directions equally and at the same speed c. Another consequence of the equations

is that if the source of the disturbance is moving, the light emitted goes through

space at the same speed c. This is analogous to the case of sound being likewise

independent of the motion of the source. This independence of the motion of the

source in the case of light brings up an interesting problem.

Suppose we are riding in a car that is going at a speed u, and light from the

rear is going past the car with speed c. According to the Galelian transformations,

the apparent speed of the passing light, as we measure it in the car, should not

be c, but c − u. This means that by measuring the speed of the light going past

the car, one could determine the absolute speed of the car. This is crazy because

we already know that the laws of mechanics do not permit the measurement of

absolute velocity.

• Something is wrong with the laws of Physics!!

At first people thought that it was Maxwell’s equations that were at fault and they

modified them so that they were invariant under the Galelian transformations; but

this led to the prediction of new electrical phenomena which could not be found

experimentally.
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Figure 1.3: Hendrik Antoon Lorentz

Then in 1903 Lorentz made a remarkable and curious discovery. He found that

when he applied the following transformations to Maxwell’s equations

t̄ =
t − vx/c2

√

1 − v2/c2
,

x̄ =
x − vt

√

1 − v2/c2
,

ȳ = y ,

z̄ = z , (1.8)

they remained invariant. These are the famous Lorentz transformations and we

will discuss them in more detail in section 1.4.

1.3 The principle of Special Relativity

In 1905 Einstein generalized the Galelian relativity principle [ applicable only to

Newtons laws ] to the whole of Physics by postulating that:

• All inertial frames are equivalent for all experiments i.e. no exper-

iment can measure absolute velocity.

• Maxwell’s equations and the speed of light must be the same for

all observers.

Einstein’s motivation was to avoid inconsistencies between Maxwell’s equations

and Galelian relativity. The Lorentz transformations must relate to actual space

and time measurements.
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Figure 1.4: In the light of knowledge attained, the happy achievement seems almost
a matter of course, and any intelligent student can grasp it without too much
trouble. But the years of anxious searching in the dark, with their intense longing,
their alternations of confidence and exhaustion, ant the final emergence into the
light - only those who have themselves experienced it can understand that. Albert
Einstein.

Special Relativity abolishes the idea of absolute space [ for example the ether ]

and absolute time, but it leaves unexplained the origin of inertial frames. Mach’s

principle says that the inertial frames are determined be the rest of the matter in

the universe [ i.e. those that are non - accelerating with respect to the rest of the

universe ]. Einstein tried later to incorporate this idea into General Relativity.

1.4 Spacetime diagrams and the Lorentz trans-
formations

Probably the easiest way to understand what the physical consequences of the

above postulates are, is through the use of simple spacetime diagrams. In Figure 1.5

we illustrate some of the basic concepts using a two dimensional slice of spacetime.

A single point, of fixed x and t is called an event. A particle or observer moving

through spacetime maps out a curve x = x(ct), and so represents the position of

the particle at different times. This curve is called the particles world - line . The

gradient of the world - line is related to the particle’s velocity,

d(ct)

dx
=

c

v
, (1.9)

so light rays [ v = c ] move on 45o lines on this diagram.
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v>c

v<c
v=c

Worldline of particle 
moving with speed v<c

An event

ct

x

Figure 1.5: A simple spacetime diagram
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Figure 1.6: The ct̄ axis of a frame whose velocity is v relative to O.

Suppose an observer O uses coordinates ct and x as in Figure 1.5, and that

another observer, with coordinates ct̄ and x̄, is moving with velocity v in the x

direction relative to O. It is clear from the above discussion that the ct̄ axis

corresponds to the world - line of Ō in the spacetime diagram of O [ see Figure

1.6 ]. We will now use Einstein’s postulates to determine where the x̄ goes in this

diagram. Consider the following three events in the spacetime diagram of Ō shown

in Figure 1.7 [ A, B and C ] defined as follows. A light beam is emitted from the

point A in Ō (ct̄ = 0, x̄ = −a) [ event A ]. It is then reflected at (ct̄ = a, x̄ = 0 [

event B ]. Finally it is received at (ct̄ = 0, cx̄ = a) [ event C ]. How do these three
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Figure 1.7: Light reflection in Ō

events look in the spacetime diagram of O? We already know where the ct̄ axis lies

[ see Figure 1.6 ]. Since this line defines x̄ = 0, we can locate events A and C [ at

ct̄ = −a and ct̄ = a ]. The second of Einstein’s postulate states that light travels

with speed c in all frames. We can therefore draw the same light beam as before,

emitted from A and traveling on a 45o line in the spacetime diagram of O. The

reflected beam must arrive at C, so it is a 45o line with negative gradient which

passes through C. The intersection of these two lines defines the event of reflection

B in O. It follows therefore, that the x̄ axis is the line which passes through this

point and the origin [ see Figure 1.8 ].

One of the most startling results which follows from this geometrical construc-

tion is that events simultaneous to Ō are not simultaneous to O!

Let us now derive the Lorentz transformations using the geometrical arguments

above and the principle of Special Relativity discussed in the last section. Assuming

that we orient our axes so that Ō moves with speed v along the positive x axis

relative to O, the most general linear transformations we can write down are

ct̄ = αct + βx ,

x̄ = δct + γx ,

ȳ = y ,
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Figure 1.8: Light reflection in Ō as measured by O.

z̄ = z , (1.10)

where α, β, γ and δ depend only on the velocity v. Looking at Figure 1.8, we see

that the ct̄ and x̄ axes have the following equations:

v

c
(ct) − x = 0 ,

v

c
x − ct = 0 . (1.11)

Together with (1.10), these straight line equations imply

δ

γ
= −

v

c
,

β

α
= −

v

c
. (1.12)

which simplify the first two transformation equations giving

ct̄ = α
(

ct −
v

c
x
)

,

x̄ = γ (x − vt) . (1.13)
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For the speed of light to be the same in both O and Ō we require that

x̄

ct̄
=

γ (x − vt)

α
(

ct − v
cx
) = 1 . (1.14)

Dividing top and bottom by c gives

γ (c − v)

α (c − v)
= 1

⇒ γ = α . (1.15)

We are therefore left with the following transformation law for x̄ and t̄:

ct̄ = γ
(

ct −
v

c
x
)

,

x̄ = γ (x − vt) . (1.16)

The principle of Special Relativity implies that if x → x̄, y → ȳ, z → z̄ and t → t̄,

v → −v. This gives the inverse transformations

ct̄ = γ
(

ct +
v

c
x
)

,

x̄ = γ (x + vt) . (1.17)

Substituting for x̄ and t̄ from (1.16) in (1.17) gives, after some straightforward

algebra,

γ = ±
1

√

1 − v2

c2

. (1.18)

We must choose the positive sign so that when v = 0 we get an identity rather

than an inversion of the coordinates. The complete Lorentz transformations are

therefore,

t̄ =
t − vx/c2

√

1 − v2/c2
,

x̄ =
x − vt

√

1 − v2/c2
,

ȳ = y ,

z̄ = z . (1.19)
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1.5 The spacetime interval

Consider the effect of the Lorentz transformations on the spacetime interval

ds2 = dx2 − c2dt2 . (1.20)

Substituting for x and t from the above Lorentz transformations one obtains

ds̄ = dx̄2 − c2dt̄2 = γ2
[

dx2 + v2dt2 − 2vdxdt − c2dt2 − v2

c2 dx2 + 2vdxdt
]

= dx2 − c2dt2

= ds2 . (1.21)

Generalizing to four dimensions we see that the spacetime interval

ds2 = −c2dt2 + dx2 + dy2 + dz2 (1.22)

is invariant under the Lorentz transformations.

The most general transformation between O and Ō will be more complicated

but it must be linear. We can write it as:

x̄α =
3
∑

β=0

Aαβxβ + bα , (1.23)

where xα → (ct, x, y, z). This linear transformation is called the generalized

Lorentz transformations. It contains ten parameters: four correspond to an origin

shift (bα), three correspond to a Lorentz boost [ which depends on v ] and three to

the rotation which aligns the axes of O and Ō. The last six are contained in the

4 × 4 matrix Aαβ [ six because Aαβ is symmetric i.e. 1
2(4 × 3)].

• Note that these parameters for a group galled the Poincaré group.

Later we will show that the Poincaré transformations preserve Maxwells equa-

tions as well as light paths.

1.6 Minkowski spacetime

Since ds is frame independent we can interpret this result geometrically by treat-

ing points xα in the four dimensional spacetime, with ds representing the four

dimensional distance [ interval ] between neighboring points.



CHAPTER 1. THE SPECIAL THEORY OF RELATIVITY 12

Figure 1.9: The views of space and time that I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength. They are
radical. Henceforth space by itself and time by itself are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent
reality. Hermann Minkowski

The expression for ds looks Euclidian if the time component is taken to be ict,

i =
√
−1:

ds2 = dx2 + dy2 + dz2 + c2dt2 . (1.24)

The line element allows one to classify spacetime intervals into three different

classes: Consider a curve Γ [ world - line of a particle, say] and an interval on that

curve. If:

ds2 < 0 ⇒ c2dt2 > dx2 + dy2 + dz2 , (1.25)

the curve is timelike in that interval;

ds2 > 0 ⇒ c2dt2 < dx2 + dy2 + dz2 , (1.26)

the curve is spacelike in that interval; and

ds2 = 0 ⇒ c2dt2 = dx2 + dy2 + dz2 , (1.27)

the curve is null in that interval.

Note that the sign of ds2 is a matter of convention, invariance between frames

is what is important.

1.6.1 The null cone

Consider a null ray [ for example a light ray propagating in the x direction: then
dx
dt = ±c, so the null ray represents a particle moving at the speed of light. If we
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dy

dx

cdt Path of massive particle 
(timelike)Future

Elsewhere

Past

Figure 1.10: The lightcone.

consider 3D Minkowski spacetime then the null rays lie on the surface of a cone [

see Figure 1.9 ]:

Before we look at some of the wonderful consequences of the Einstein postulates,

let us return briefly to the Lorentz transformations. If we define tanhΦ = v
c we

can write them in the following way:

x̄ = x cosh Φ − ct sinh Φ ,

ct̄ = −x sinh Φ + ct cosh Φ . (1.28)

ict

x

x

ict

φ

i

i

Φ

-

-

Figure 1.11: ict space
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Formally this corresponds to a rotation through an angle iΦ in (ict, x) space [ see

Figure 1.11 ].

1.7 Consequences of the Einstein postulates

1.7.1 Time dilation

Suppose we have someone in a spaceship Ō moving at some velocity v relative to

an observer O. The guy in the spaceship turns his stereo on and starts listening

to some rap music!! With a clock he measures the time interval between two beats

∆t̄ = t̄B − t̄A. what time interval does the observer O measure? To calculate this

it is easier to use the inverse Lorentz transformations. By the Relativity principle

we have:

t = γ
(

t̄ + vx̄/c2
)

, (1.29)

so

tB − tA = γ
[

t̄B − t̄A + v
c2 (x̄B − x̄A)

]

. (1.30)

But the stereo is stationary relative to Ō so x̄A = x̄B, so we end up with:

∆t = tB − tA = γ∆t̄

= ∆t =
∆t̄

√

1 − v2

c2

. (1.31)

Since ∆t > ∆t̄, time in the spaceship slows down! That is, when the clock in

the spaceship records 1 second elapsed, as seen be the man in the ship, it shows

1/
√

1 − v2/c2 seconds to the man outside.

The slowing of clocks in a moving system is a real effect and it applies equally

to all kinds of time for example biological, chemical reaction rates, even to the rate

of growth of a cancer in a cancer patient! How is this so you may ask? If the rate

of growth of the cancer was the same for a stationary patient as for a moving one,

it would be possible to use the rate of cancer development to determine the speed

of the ship!

A very interesting example of the slowing down of time is that of the cosmic

ray muons. These are particles that disintegrate spontaneously after an average
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-

Figure 1.12: Length contraction

lifetime of about 2.2 × 10−6 seconds. It is clear that in its short lifetime a muon

cannot, even at the speed of light, travel more than 600 m. But although the

muons are created at the top of the atmosphere, some 10 km up, we can detect

them down here on earth. How can that be!!? From the muon point of view (i.e.

their frame of reference) they only live about 2 µs. However from our point of view

they live considerably longer, indeed long enough to reach the surface of the earth

(by a factor of 1/
√

1 − v2/c2).

1.7.2 Length contraction

Now suppose the observer O wants to measure the length of the spaceship. He can

only do this by making an instantaneous measurement of the spatial coordinates

of the end of the ship i.e. xA and xB. The Lorentz transformations give you:

x̄1 = γ (x1 − vt1)

x̄2 = γ (x2 − vt2) , (1.32)

so the length is

L = x2 − x1

= γ−1 (x̄2 − x̄1)

= γ−1L̄ , (1.33)
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since t1 = t2 [ instantaneous measurement by O ]. Writing this result in terms of

v and c we have:

L =
√

1 − v2/c2L̄ . (1.34)

Note that this is not a physical effect on the rod but an effect of spacetime itself.

1.7.3 The twin paradox

To continue our discussion of the Lorentz transformations and relativistic effects,

we consider the famous “twin paradox” of Peter and Paul. When they are old

enough to drive a spaceship, Paul flies away from earth at very high speed. Because

Peter who is left on the ground, sees Paul going so fast, all of Pauls’ clocks appear

to go slower , from Peter’s point of view. Of course, Paul notices nothing unusual.

After a while he returns and finds that he is younger that Peter! Now some people

might say “heh, heh, heh, from the point of view of Paul, can’t we say that Peter

was moving and should therefore appear to age more slowly? By symmetry, the

only possible result is that they are both the same age when they meet”. But in

order for them to come back together and make a comparison, Paul must turn

around which involves decelerating and accelerating, and during that period he is

not in an inertial frame. This breaks the apparent symmetry and so resolves the

paradox.

1.8 Velocity composition law

Suppose a particle has a velocity u = (u1, u2, u3) in O, then at time t its spacetime

coordinates are x = (ct, u1t, u2t, u3t). In a frame Ō moving at a speed v relative

to Ō, its spacetime coordinates will be:

x̄ =
[

γc
(

t − vu1

c2

)

, γ (u1t − vt) , u2t , u3t
]

(1.35)

The velocity in Ō simply comes from dividing the space parts by the time part i.e.

ū1 =
dx̄1

dt̄
=

u1 − v

1 − vu1

c2
,
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ū2 = =
dx̄2

dt̄
=

u2

γ
(

1 − vu1

c2

) ,

ū3 =
dx̄3

dt̄
=

u3

γ
(

1 − vu1

c2

) . (1.36)

If u1 = u and u2 = u3 = 0 then

ū =
u − v

1 − uv
c2

. (1.37)

This looks like the Galelian relative velocity if |u| , |v| ' c. If u = c, ū = c, so we

confirm the universality of the the speed of light.


